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A Method for Estimation of Difficulty and
Discrimination Indices in Programed Learning

Ellen F. Roson and Lawrence M. Stolurow
University of Illinois

Wben using large samples of subjects in a test development program, one

is faced with the problem of data analysis. Often it is not ecouomically

feasible to actually use all of the data which has been gathered. In view of

this, an accurate method of estimating the value of the desired statistic

for the whole sample from a smaller portion of the sample is desirable.

In test analyses, the statistics usually used for revision purposEs

are the difficulty index and the discrimination index (Wood, 1961), The

former is the proportion of subjects whoanswer the item correctly, Thus,

a bigh difficulty index indicates less difficult items. The discrimination

index is a measure of how well the test item discriminates subjects with

respect to some criterion, i.e., how well the item correlates with some

criterion measure. In essence, the discrimination index is a measure of the

validity of the item, a measure of how well it predicts the criterion.

PROBLEM

In test construction, usually an item difficulty of 50% is aimed for,

In programed learning it is possible to consider each frame (each question)

as a test item, the difference being that the feedback (knowledge of results)

given to the student is relatively immediate, and that the purpose of the item

Ja_not the same as a similar test item. In progvamed learning, the situation
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is constructed in order to foster learning; in a test, the situation is

constructed in order to determine how much learning has already occurred.

Thus, the question of what the optimum level of difficulty is becomes less

settled. Should most students be unable to answer the item or should most

students be allowed to succeed? Item difficulty level is a variable in the

field of programed learning; the optimum level of difficulty is yet to be

empirically determined. Further, item difficulty is intimately related to

the concept of step size. A possible empirical measure of the step size

from item (a) to item (b) is the difference in difficulty of the two items.

Thus, the estimate of total sample item difficulty should be scaled so that

it has the property of additivity. 1

Discrimination Index

Kelley (1939) attacked the problem of finding the best sample for

estimating the discrimination of a test item for the whole sample. HO made

the following assumptions:

(1) that if 2j individuals are to be selected as the sample on which the

estimate is to be based, the best results will be achieved if j

individuals are chosen at the bottom of the distribution and j at the

top;

(2) that the whole sample is of size Ny where N = 2m;

(3) that the scores are graduated;

(4) that the scores are normally distributed;

1
For additional discussion of issues relating to both tests and problemssee Jacobs (1962).
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(5) that the certainty with which these two groups are differentiated is

given by
R
u

(i) f(j) - s_ 0 where x
u

is the mean deviation score
x

xl

x
u 1

PPP

of the upper group and x
1

is the mean deviation score of the lower

group.
2

A pictorial representation of the situation is given in Figure 1. The

problem has now been reduced to the mathematical problem of solving equation

(i) for j such that f is maximized, However, before differentiating, the

scores need to be corrected for systematic error in order to work with the

"true scores." This systematic error arises as a consequent of the par-

ticular sampling method employed -- a score that is not randomly selected,

but rather chosen because it has a certain deviation will suffer from a

systematic error. This error can be corrected for by regressing the score

toward the mean:

xl = rx
a
where r is the reliability coefficient,a

The standard deviation of 20 is S 117;5--where S is the standard deviationa

of the 2m measures, All the other predicted scores will have the same

standard deviation,

S4
Thus xl = = E .rx = rx and S-I =

1 3 1 j J,
V .1

Thus, the critical ratio f(j) to be maximized becomes:

- XI 2rxI
1

?fo) = r > O.S-I - S
2rx

-x xl S r-r
2

U 1 Ii

2
f is the statistic commonly known as the "critical ratio," It is clearthat as.the two groups become more clearly discriminable the distance between

u
and x

1
will get larger, but i will remain unchanged,

u 1
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then

f(j) = K X where K _ V 2r
is

s 17-72T

DisamaximurawherOrT7c.is a maximum,

5

-
Let q = j/Ns then x =

z
q
/

where z is the ordinate of the standard normal

distribution (Os 1) at the point x where x is the end point of the tail which

contains the praportion q of the cases of the distribtuion. Thus

and

f (x) = K 1177 () =KVIT z/q = Cz

df 1 dz 1 2 dqC <

q "
dx dx 37 dx

-x + z/2q )0 C14; q . ,50,
Cz

Thus, -x +
z/

q = 0, That is q =
z/

2x, Kelley (1939) asserts that this

z/value makes f a maximum. He further asserts that q = 2x when q = ,2702678

Davis (1949) presents a table for quickly calculating discrimination

indices based on the upper and lower 27%. He improves Kelley's work by using

Fisher's z as a direct measure of the discriminating power of an item.

The advantage in using Fisher's z is that a given increase in the value of

Fisher's z has essentially a constant meaning at any part in the range of its

possible values. Davis also states that the.correlation coefficients obtained

by this procedure are not greatly affected by the difficulty levels of the
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test items. Thus, if similar samples of students are used to determine the

discrimination power of a set of test items, Fisher's z transformation of
these correlation coefficients can be legitimately added, subtracted, or
averaged.

Davis (1949) reports that the reliability of the discrimination indices
calculated using his table (which is entered by means of the proportion of

successes on the item in the upper and lower 27% of the sample) based on 100
cases in each tail is approximately 0.60.

Difficulty Index

Davis (1949) also presents a method for determining the difficulty of
an item (based on the proportion of success on the item of the upper and lower
27%) which he states leads to a reliability of about .98 for a set of diffi-
culty indices when the size of each tail is about 100 cases. His development
is briefly outlined in the next few paragraphs with an adaptation to programed
items.

Let P represent the proportion of students of the total sample that know
the answer to an item, then P is defined as follows:

IV
R

K - 1P =
N NR

where R = number of students giving correct answers,

Vi = number of stuOents giving incorrect answers,

K = number of choices of answers for the item,

N = number of students in the sample,

NR = number of students who do not reach the item in the time limit.
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In programed instruction, NR = 0, since, with no time limit, all students will

have an opportunity to read all questions. Therefore, all ommissions must

be considered as errors. It is possible that a student will omit a page he

is not supposed to omit, but this must be counted as an error (not following

instructions). The expression reduces to

R - W(K-1)P -

Furthermore, programed instructional items often will be of the fill-in-the-

blank type. The size of the class of responses available to the student

must be then determined from the context of the question.

Let u be the set of all existing responses, S be the subset of u consisting

of all responses potentially available to the student to use in answering

the item, A be the subset of S consisting of the responses to the item, A be

the subset of S consisting of the incorrect responses, and m (X) be the size

of the set X or the number of elements or responses in the set X, then

K = m 1) At) = m (S). For example, suppose the item calls for a real number

as the correct response. As the reals are a set of infinite size, the number

of elements in S becomes infinite, and K = m (S

limit, as n increases to infinity,

> Thus, in the

lim R lim /(K-1) R lim /(m(S) - 1)P =11> esC) N
""

N

R lim /(u-l) R lim W
/(n-1)NN n--> c>,- N N n-->

=
R/
N (where n is the number of elements in S).
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With a large sample, we can estimate the proportion P from data on the

highest and lowest 27% of the sample, Let Post be the estimate for P,

such that

Pest, = P P
LI

where P
H

is the proportion of successes in the upper

2

27541 and Pia in the lower 27% of the sample,

The Davis table transforms the two proportions Pif and pia into a

difficulty index which is on a linear scale; that is, they transform Pest,

into a standard score and then multiply it by a constant (21,066) and add

50 to this product. This transformation yields an essentially linear scale;

a scale of proportions does not constitute such a linear scale, As is true

with most data transformations only difficulty indices based on the same or

similar samples are comparable.

By means of the Davis Table (1949) a satisfactory estimate of item

difficulty and discrimination which does not require the laborious calcula-

tion of the total population and which is easily applied to a series of

programed items can be determined.

SUMMARY

This paper presents an analysis of a persistent problem in the

development of programed instructional materials: the reduction of data

relating to student performance on program frames. It has been customary to

use small samples of students and to look at all of their responses in order

to make decisions about frame revision, This paper takes the other alternative
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as a given, namely, that a large sample of students is used, and asks what

approaches to data reduction might be appropriate and useful. The use of a

54% sample to obtain difficulty and discrimination indices is discussed in

the light of the problems of programed instruction.
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